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Abstract

Identifying risky driving behavior is of central importance for increasing
traffic safety. This research tackles the task of analyzing naturalistic driv-
ing data captured by interpretable data science methods using in-vehicle
sensors. In particular, this thesis focuses on symbolic time-series abstrac-
tion and the subsequent behavioral profile identification using Probabilistic
Topic Modeling (PTM). Originally, PTM is applied in text-based studies
to uncover latencies in text. By applying symbolic time-series abstraction
methods on driving data, this study was able to present rides as documents
and occurrences (i.e., speed and acceleration) as words. Twenty-four real-
life rides presented 24 documents, and were analyzed using Latent Dirichlet
Allocation (LDA). By applying different strategies in topic modeling, a va-
riety of two-, to four-topic models were detected with meaningful behavioral
topics. The evaluation of these strategies indicates that inclusion of bi-,
and trigrams leads to more interpretable topics. Topics that were extracted
from the driving data varied from city driving to highway driving, with in
between nuances such as driving during rush hour and variation in accelera-
tion due to obstacles on the road (i.e., traffic lights). To compare alert versus
unalert participants, a Psychomotor Vigilance Test (PVT) was included in
each experiment, which made it possible to objectively label participants.
The results indicate that in general the probability of topic distribution was
equal for alert and unalert participants. Future research should benefit ap-
plying the methodology applied in this study and acquire larger datasets as
this would lead to a larger variety of topics. Besides that, inclusion of PVT
as a long-term study would benefit to objectively control for alertness. Last,
techniques, which improve symbolic time-series abstraction, should be ap-
plied to be able to translate naturalistic driving data into more meaningful
words.

1



Acknowledgements

First, I would like to express my very great appreciation to my thesis su-
pervisor Dr. Martin Atzmueller of the Data Science: Business and Gover-
nance Master at Tilburg University. Dr. Atzmueller was very helpful and
throughout the process of writing my master thesis, his constructive advise
and suggestions helped me through the development of my work. His will-
ingness to give his time so generously has been very much appreciated.

Also, I would like to thank Inge Wirken from Crossyn Automotive B.V. for
offering me the opportunity to write my thesis at Crossyn. The usage of
the hardware of Crossyn and the dataset made it possible to develop myself
more into data science.

I would also like to thank Yannick Colastica from Toyota Netherlands for
providing me a vehicle to conduct my experiments. It was a great experience
for me to conduct the experiments in this safe and modern car and I would
like to thank Toyota Netherlands for this tremendous gesture of providing
a car.

Last, I would like to thank my family and friends for all the moral support
and advise they gave throughout the development of my thesis. In partic-
ular, I would like to thank my girlfriend Michaela for being such a great
support during my thesis. Michaela, thank you so much for all encouraging
words during my process and for being there.

2



Contents

1 Introduction 5
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Research question . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Work 12
2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Symbolic Aggregate Approximation . . . . . . . . . . . . . . . 15
2.4 Probabilistic Topic Modeling . . . . . . . . . . . . . . . . . . 17
2.5 Psychomotor Vigilance Test . . . . . . . . . . . . . . . . . . . 18

3 Experimental Setup Driving Experiment 20
3.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Apparatus and materials . . . . . . . . . . . . . . . . . 20
3.1.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.5 Driving task and environment . . . . . . . . . . . . . . 21

3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Data overview . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Preprocessing and Feature Extraction . . . . . . . . . 23

3.3 PTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Parameter optimization . . . . . . . . . . . . . . . . . . . . . 25

4 Results Driving Experiment 26
4.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 LDA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Topic definition . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Topic representation in documents . . . . . . . . . . . 28
4.2.3 Visualization topics . . . . . . . . . . . . . . . . . . . 30

4.3 Different strategies in Topic Modeling . . . . . . . . . . . . . 31
4.3.1 Behavioral Topic Modeling using n-grams: . . . . . . . 31
4.3.2 Behavioral Topic Modeling using selected n-grams . . 34

3



5 Experimental Setup Psychomotor Vigilance Test 36
5.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Data Preprocessing of PVT . . . . . . . . . . . . . . . . . . . 37
5.3 Data annotation . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.1 PVT-errors . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.2 PVT Reaction Time . . . . . . . . . . . . . . . . . . . 38

6 Results Topic Models versus Alertness-state 39
6.1 Standard LDA-model . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Bi-and trigrams LDA-model . . . . . . . . . . . . . . . . . . . 39
6.3 Max-features model . . . . . . . . . . . . . . . . . . . . . . . 40
6.4 Selected n-grams model . . . . . . . . . . . . . . . . . . . . . 41

7 Discussion 42
7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Conclusion 46

Appendices 53

A PVT Error Results 53

B Labels of Alertness State 55

C PVT Reaction Time Results 56

D Topic probability of alertness state. 59

4



1 Introduction

1.1 Motivation

An increase in road accidents has become a central issue for researchers to
predetermine risky driving behavior, which increases the chance of road fa-
talities. The Dutch government has the objective to keep the number of
road fatalities by 2020 under 500 per year (Aarts, Weijermars, Schoon, &
Wesemann, 2008). However, the Dutch "Smart Traffic Accident Report-
ing" (STAR-initiative) argued that the goal for 2020 is unreachable as road
fatalities keep increasing. More specifically, 597 road fatalities have been
recorded in 2016 in the Netherlands. A gradual increase of 613 road fatal-
ities was recorded in 2017 (CBS, 2018). In order to provide more detailed
insights into real-life driving behavior, sensor-based data science is an impor-
tant emerging research area, i.e., for diminishing the trend in road accidents,
and to enhance overall traffic safety.

1.2 Background

Extensive research has already provided many insights in the field of road
safety. For example, Zhang, Yau, Zhang, and Li (2016) mentioned in their
study that an increase in motorization has lead to "severe traffic-related
causalities" (Zhang et al., 2016, p. 34). In January 2018, the amount of ve-
hicles in the Netherlands increased with 2% to 12.5 million vehicles. Yang,
Li, Guan, Zhang, and Fan (2018), investigated whether high-density in traf-
fic had an influence on driving behavior and concluded that lane changing
and overtaking cars led to a significant increase. Also Cantin, Lavallière,
Simoneau, and Teasdale (2009) mentioned lane changing and overtaking
cars has negative effects on traffic safety. Thus, an increase of vehicles on
the Dutch road has a negative influence on traffic safety.

Besides traffic density having an influence on traffic safety, research has
also been conducted to study driving behavior (Bener, Lajunen, Özkan,
Yildirim, & Jadaan, 2017; H.-Y. W. Chen, Donmez, Hoekstra-Atwood, &
Marulanda, 2016; Garbarino et al., 2017). Studies included self-reports of
large populations to study the behavior of participants while driving a car.
The focus in the studies was to examine driving behavior by analyzing risks
that have a negative influence such as, drowsiness, intoxication, aggression,
or distraction. While it is indisputable that well designed questionnaires
allow researchers to test hypotheses, Wohleber and Matthews (2016) con-
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cluded that overconfidence might lead to implications in results of studies
which utilize questionnaires to determine driver safety. A reason for this
is the "belief that one possesses a greater competence than one’s peers"
(Wohleber & Matthews, 2016, p. 265). Overestimation, has been known to
cause the illusion of control where an individual, who is in an adverse state
of driving, might perceive himself in a controllable state. Studies revealed
that while individuals perceived themselves in a controllable state, cogni-
tive tasks were performed significantly worse. Thus, overestimation leads to
underestimation of risks, which leads individuals to avoid precautions such
as resting, hands-free driving, or not making use of a mobile phone while
driving (Saxby, Matthews, & Neubauer, 2017).

Another disadvantage in studies, which studied risky driving behavior, is
the quality of pre-crash information. More specifically, examples were given
by Neale, Dingus, Klauer, Sudweeks, and Goodman (2005) in which police
reports failed to mention the factual cause of an accident. Instead, reports
were limited to determine the car as a rear-end collision and that the cause
of it were cars following too close to another. It would have been more
valuable to learn the state of the driver to determine the risk factors of in-
cautious drivers. Therefore, attempts have been made to determine driving
behavior from a drivers’ point of view. For example, Radun, Radun, Wahde,
Watling, and Kecklund (2015) were able to determine the risks factors and
risk groups among truck drivers through self-reports, and concluded that
truck drivers were aware of their fatigue state even before they started their
shift. Such expositions as Radun et al. (2015) mentioned are of essence to
evaluate risk groups and risk factors of driving behavior in order to educate
and create awareness among drivers. However, experimental research tech-
niques are available to predetermine potential adverse driving behavior and
would therefore be more effective than post-accidental risk assessments.

As sensor-based data science emerged, state-of-the-art tools have made it
possible to conduct more in-depth research to study real-life driving behav-
ior. Recent studies have already been conducted in which driving behav-
ior was analyzed by applying, mobile phones, stereo vision systems, GPS-
sensors, wearable cameras, and heart rate monitors (Abouelnaga, Eraqi,
& Moustafa, 2017; Battiato, Farinella, Gallo, & Giudice, 2018; Belakhdar,
Kaaniche, Djemal, & Ouni, 2018; Botzer, Musicant, & Perry, 2017; Chowd-
hury, Chakravarty, Ghose, Banerjee, & Balamuralidhar, 2018; Park, Lee,
Park, Seong, & Youn, 2018). Botzer et al. (2017) studied the effect of a
smartphone collision warning application system (CWA) to condition po-
tential risky driving behavior of participants. Battiato et al. (2018) applied
stereo vision systems in their study to create a pedestrian detection sys-
tem by applying a Traffic Conflicts Technique (TCT), which was able to
detect unpredictable situations in traffic by measuring the interactions be-
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tween pedestrians and buses. By analyzing spatial and temporal variables,
risk impact levels could be created on intersections which provided more in-
sights in traffic safety. Chowdhury et al. (2018) were able to identify drivers
with high accuracy (82.3%) using solely GPS data. Wearable cameras were
applied in the research of Abouelnaga et al. (2017), and by labelling pos-
tures of drivers, movements were classified using a deep neural network.
Park et al. (2018) measured heart rate variability using an electrocardio-
gram (ECG)-signal to analyze low and high frequency features in heart
rate, and were able to predict drowsiness by 93.11% using a Support Vector
Machine-classifier. The advantage of theses studies is the use of naturalistic
driving behavior (NDB). Unlike studies, which include self-reports to distin-
guish driving behavior, NDB obtains data from real-life situations. Besides
that, sensor-based studies increase the ecological validity of NDB-research
as non-intrusive sensors can be applied while obtaining experimental data.
Moreover, data of multiple participants can be retrieved automatically as
sensors can be installed simultaneously in vehicles.

1.3 Relevance

Although sensor-based apparatus have offered high quality data, studies
are challenged. More specifically, McLaurin et al. (2014) mentioned NDB-
analysis is challenged as "the large amount of data commonly collected dur-
ing naturalistic driving studies makes comprehensive analysis prohibitive
without some type of data reduction" (McLaurin et al., 2014, p. 2107). The
authors further emphasize that data reduction should be conducted with
precaution, as it might lead to omission of relevant data, or deformation of
data structures. To cope with large time series data sets, McLaurin et al.
(2014) included a time-series abstraction method, also referred as Symbolic
Aggregate Approximation (SAX). Subsequently, Natural Language Process-
ing (NLP) was applied which allowed to analyze the time series data with an
unsupervised learning technique, referred as Probabilistic Topic Modelling
(PTM). Originally, PTM has been applied in text mining studies as it ana-
lyzes text in documents. The output of PTM is a topic model which assigns
occurrence-probabilities in text to a set of words. The probability distri-
bution of these set of words are then assigned to as topics. As documents
may contain multiple topics, PTM allows to classify topics in documents.
This method has successfully been applied in time series data sets, as it
has the potential to analyze large data sets while producing a comprehen-
sive set of topics, which may reveal patterns that manual interference is not
able to discover. McLaurin et al. (2014) were even able to identify drivers
with Obstructive Sleep Apnea (OSA) compared to non-OSA-participants.
A key issue which they have not treated in their study was to optimize
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PTM by exploring optimization steps, such as "alternative word definitions,
optimization of parameters, models that include n-grams, or patterns of mul-
tiple words" (McLaurin et al., 2014, p 2111). Therefore, this study explores
steps which could potentially optimize PTM using naturalistic driving data
(NDD).

1.4 Research question

Previously, McLaurin et al. (2014) suggested to further study optimization
steps and to conclude whether clusters are found which lead to new in-
sights in naturalistic driving behavior. Currently, Aksan, Dawson, Tippin,
Lee, and Rizzo (2015) have exclusively followed up this previous study and
applied alternative word definitions. However, their study lacked focus on
optimization steps such as, optimizing parameters, using n-grams, and pat-
terns of words. Besides that, different variables (i.e., steering wheel angle,
and rate of change of steering wheel angle) were applied. This study will ex-
tend the study of McLaurin et al. (2014) by optimizing clusters. McLaurin
et al. (2014) included lateral-, and longitudinal acceleration, and speed data
in their symbolic representation of time series data. In the current study,
a different in-vehicle sensor was applied which recorded GPS, linear accel-
eration and speed data. Thus, a distinctive symbolic representation will be
included in the analysis (i.e., linear acceleration and speed). By applying
this symbolic representation of time series data, this study is interested in
finding patterns of naturalistic driving behavior. Thus, the main research
question is defined as:

RQ 1: Which behavioral driving topics can be distinguished

from naturalistic driving behavior?

Before applying PTM in their experiment, McLaurin et al. (2014) mentioned
that a complete corpus was included to the PTM-analysis, as they considered
full inclusion of essence to ensure no relevant data was removed. However,
this study hypothesizes that a combination of inclusion and exclusion is
of essence in order to determine both general patterns and more subtile
patterns. More specifically, pre-processing steps which include or exclude
the importance of frequent or minimal occurring words need to be taken into
account, as frequent occurring words might ignore more subtile differences
in text González, Romero, Guerrero, and Calderón (2015). Therefore, a sub
research question can be formulated as:

RQ 2: Which general and subtile behavioral driving topics

can be distinguished from naturalistic driving behavior?

McLaurin et al. (2014) controlled their experiments by collecting NDD of
26 participants (13 OSA patients and 13 non-OSA patients). Differences

8



in driving behavior were measured by comparing topic probabilities of both
groups, and to measure significant differences. Unlike the aforementioned
study, the current study had no access to a human subject pool with OSA-
patients. Instead, this study is interested in detection of the alertness state
of participants. To achieve this, a Psychomotor Vigilance Test (PVT) was
included in each experiment. PVT is a widely applied test in studies to
measure alertness, and reaction time of individuals to determine their alert
state, and thus, adequacy of mental performance (Aryal, Ghahramani, &
Becerik-Gerber, 2017). Analyzing psychomotor vigilance of participants had
the objective to determine the alertness state of each participant, and to
analyze whether alertness influences driving behavior. Thus, a second sub
research question is formulated as:

RQ 3: Which differences in naturalistic driving behavior pre-

vail between alert and unalert participants?

NDD for this study were collected by conducting twenty-four real-life ex-
periments. Crossyn provided the data set which was collected by using one
in-vehicle GPS sensor, which was installed in a 2017 Toyota CH-R. GPS
recordings determined speed, and linear acceleration. After data is prepro-
cessed, corresponding steps will be conducted for PTM. Then, in order to
establish a stronger PTM, optimization steps in NLP will be applied. Partic-
ipant alertness was measured with a PVT, which was conducted on an iPad
Pro 9.7 inch. The results of this experiment should provide insights, which
enable answering the main research question, and sub research questions.

1.5 Significance

The study of McLaurin et al. (2014) constructed a framework for PTM,
which applied NDD. Optimization in PTM benefits future research as it
could potentially establish a more extensive framework for studies which
would like to include unsupervised learning techniques. At the same time,
the findings of this study should also contribute to future research which
involves supervised learning techniques as the PTM-methodology has the
potential to define differences in driving behavior of groups of people. Fur-
thermore, this study aims to improve the predominant PTM-model, which
contributes to the exploration of clusters which contain subtile distinctions
compared to more general clusters.

In collaboration with Crossyn Automotive B.V.1 in the Netherlands, the
inclusion of an in-vehicle sensor, which recorded rides during experiments.
Crossyn is a provider of services for car- and fleet-owners with the objective
to improve the driving experience. Key aspects, which aim to improve this
experience are, predictive maintenance, economic driving, and safe driving

1https://www.crossyn.com/crossyn
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behavior. This study aims to provide new insights in safe driving behav-
ior, which contributes to improvement of services of Crossyn. Furthermore,
by creating strong algorithms in driving behavior, future handheld and in-
vehicle applications can be created which act as state-of-the-art warning
systems, which aim at reducing risky driving behavior, and thus, road fa-
talities.

1.6 Thesis outline

The remaining part of the paper has been divided into eight chapters.

• First, Chapter 2 provides an overview of the relevant literature. Sec-
tion 2.1 briefly clarifies the background of machine learning algorithms,
and Section 2.2 related work regarding cluster algorithms. Then, Sec-
tion 2.3 describes steps which were defined in previous studies to con-
vert time-series data to symbolic representation by applying SAX. Sec-
tion 2.4 provides in-to depth knowledge of PTM by explaining its algo-
rithm. Finally, Section 2.5 describes the background of PVT regarding
its utility in research.

• Chapter 3 details the applied methods of this study. In Section 3.1,
a detailed overview is given of steps that were conducted for data
collection. Section 3.2 provides an overview of the data set and the
preprocessing steps which were applied in order to prepare the data
for PTM. Section 3.3 explains the steps for PTM, and provides an
overview of the methodology for parameter selection. Finally, Section
3.4 is a detailed overview of preprocessing steps for PTM, which were
necessary to answer the second research question.

• Chapter 4 analyses the results of the all experiments conducted for this
study. Interpretation of the topics, in each topic model are described
in detail, and visual representation is joined. In Section 4.2, results of
the first experimental setup are presented, which are needed to answer
the first research question. Second, Section 4.3 relates to results of the
second part of experiments including different topic model strategies.

• Chapter 5 describes the experimental setup of the Psychomotor Vigi-
lance Test, which was included in the driving experiments. In Section
5.1 the setup of the PVT, including procedure steps are described.
Subsequently, steps are included in Section 5.3, which explain how
the acquired results of the PVT are translated to label participants.
In Sections 5.3.1 and 5.3.2 it is explained how labeled data is applied
to evaluate the experiments of this study.
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• Chapter 6 presents the results of the topic models, compared to the
PVT results. In each section of this chapter, the results of each topic
model strategy are described.

• Chapter 7 evaluates the results of all experiments and relates them
to the research questions. In Section 7.1 a critical overview of the
limitations in this study are provided. Then, Section 7.2 provides
suggestions for future research.

• Finally, Chapter 8 concludes the results achieved in this study, and
how the results have contributed to current and future research.
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2 Related Work

Extensive research has already provided many insights in the field of road
safety. The current study is related to previous established work in the field
of behavioral topic modeling. In section 2.1, a brief overview is provided
to conceptualize machine learning strategies. Subsequently, Section 2.2 dis-
tinguishes different types of cluster strategies. Third, section 2.3 describes
how driving data can be symbolically represented by Symbolic Aggregate
Approximation. Then, Topic Modeling is explained in section 2.4 and pro-
vides theory about the approach of this algorithm to large datasets. Finally,
in Section 2.5 Psychomotor Vigilance Test is defined and discussed in detail
on how it will be applied in this study.

2.1 Machine Learning

The field of machine learning distinguishes two types of approaches when
analyzing data. Figure 2.1 provides an overview in which these approaches
are divided into unsupervised and supervised learning techniques. Using
this first approach, researchers have been able to analyze data in which "el-
ements are clustered into different groups based on similarities and dissimi-
larities" (Virdi & Madan, 2018, p. 2). Unlike supervised learning techniques,
in which data points are labelled so machine learning algorithms can clas-
sify them correspondingly, unsupervised learning techniques operate in the
absence of labels. Recent studies, which applied naturalistic driving data
to cluster their data, emphasized the importance of clustering techniques.
For example, Li, Wang, Mo, and Zhao (2018) emphasized clustering data
is of essence in naturalistic driving datasets as manually labelling these is
very time consuming. Moreover, manual labelling of data is risky as un-
derlying information in datasets may be missed while tracking real driving
scenario’s (Li et al., 2018). Thus, it is crucial to include unsupervised learn-
ing techniques in analyzing naturalistic driving data, in order to benefit
time-efficiency and no underlying information is lost during analyses.

12



Figure 2.1 Overview of Machine Learning applications divided
into a spectrum of unsupervised and supervised learning. Adapted
from the PyTexas conference 2015 in Texas, September 25, 2015.
Retrieved September 4, 2018, from chdoig.github.io/pytexas2015-
topic-modeling/#/2/1. Reprinted with permission. Image is li-
censed under CC BY 2.0 (Doig, 2015).

In the unsupervised learning spectrum, three types of clustering techniques
can be distinguished, which are: hard-, hierarchical-, and soft/fuzzy clus-
tering. Figure 2.2 provides a visual representation of these different types
of cluster techniques. The vast majority of studies on clustering algorithms,
based their analyses on hard clustering. More specifically, K-means clus-
tering, which falls under the scope of hard cluster algorithms, has served
the majority of researchers, who applied clustering analysis in their stud-
ies (Jain, 2010). K-means clustering, segments groups of data points into
clusters by applying a squared error criterion (Jain, Murty, & Flynn, 1999).
As hard clustering distinguishes groups of data, and forms homogeneous
clusters, this technique has allowed studies to explore unlabelled data. For
example, Yang, Ma, Zhang, Guan, and Jiang (2018) clustered two types of
drivers in their study, which were: aggressive and non-aggressive drivers.
Their data consisted of EEG-signals from participants who took part in a
simulation study. Subsequently, after determining the clusters, they were
able to apply a Support Vector Machine (SVM) algorithm as the clusters
they had created served as labels. Yang, Ma, et al. (2018) applied k-Means
clustering in their study, which in this case, is a typical form of hard clus-
tering as participants were either labelled aggressive or unaggressive-, and
stable or unstable behavior. The left part of figure 2.2, provides a visual
representation of hard clustering. Here, the result of k-Means clustering is
shown as clear distinctions are made between clusters, allowing researchers
to classify each cluster as a label and apply supervised learning techniques.
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Figure 2.2 An overview of types of clustering. From left
to right: hard clustering, hierarchical clustering, and soft/fuzzy
clustering. Adapted from the PyTexas conference 2015 in
Texas, September 25, 2015. Retrieved September 4, 2018, from
chdoig.github.io/pytexas2015-topic-modeling/#/2/5. Reprinted
with permission. Image is licensed under CC BY 2.0 (Doig, 2015).

2.2 Clustering

In their review about data mining techniques for driving data, Constanti-
nescu, Marinoiu, and Vladoiu (2010) evaluated hierarchical clustering anal-
ysis (HCA). The authors define HCA as: "HCA classifies the drivers accord-
ing to some variables so that homogeneity within and heterogeneity among
groups are obtained" (Constantinescu et al., 2010, p. 658). More specifi-
cally, hierarchical clustering uses a proximity measure to cluster data points
which contain the lowest distances. Subsequently, this process is repeated,
until one cluster of the complete dataset is created. The middle visual rep-
resentation in Figure 2.2 is an example of an abstract hierarchical cluster
analysis, in which each branch is represented by one cluster. By combining
smaller clusters, larger clusters are created. The main advantage of HCA
was mentioned in the study of Farrelly et al. (2017), in which HCA "min-
imizes the introduction of error and better preserves the local and global
structure of the data" (Farrelly et al., 2017, p. 95). This allows researchers,
who explore naturalistic driving data, to research broader constructs in data.
For example, clusters high in hierarchy, could potentially detect aggressive
driving behavior, while clusters lower in hierarchy, might be able to highlight
distinctions between aggressive drivers. Another advantage of HCA, which
Farrelly et al. (2017) revealed, is the ability to analyze naturalistic driving
data without sample size limitations. However, in a review about HCA, Ku-
mar, Dhok, Tripathi, and Tiwari (2014) mentioned that in order to receive
stable results from HCA, noisy data and outliers need to be excluded from
datasets, as HCA might perform worse including these. Therefore, HCA
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might not be the optimal algorithm in analyzing naturalistic driving data,
as inclusion of subtile differences (i.e., noisy data and outliers) is key in an-
alyzing driving behavior.

The third cluster algorithm which is discussed is soft clustering, also referred
as fuzzy clustering. Soft clustering analyses samples in datasets, in which
each sample is shaped in one or more clusters. Subsequently, each cluster
has a specific degree of importance in each sample. Results in soft clustering
are received by finding latent connections between samples in the dataset.
The visual representation on the right in figure 2.2, provides an abstract
overview of three samples in a dataset, which consist of three different types
of clusters at most. The strength of the clusters is visualized by the length
of each bar in each sample. Bora, Gupta, and Kumar (2014) mentioned
in a comparative study between hard and soft clustering, that flexibility is
the main advantage of soft clustering, as samples can be divided in more
than one cluster. Another advantage of soft clustering is the ability to find
underlying information in shape of latent variables. More specifically, la-
tent variables analyze the collection of samples, and return the underlying
meaning of the data. One unsupervised algorithm, which includes latent
variables, is Probabilistic Topic Modeling (PTM) (Blei, 2012). Initially,
PTM was designed for text mining analyses, but recently it has been ap-
plied for other data mining purposes, such as e-Health data, financial data,
and naturalistic driving data (J. H. Chen, Goldstein, Asch, Mackey, & Alt-
man, 2017; Venkatraman, Liang, McLaurin, Horrey, & Lesch, 2017). Both
studies share in common that they used their field-specific data analogously
to text documents. Venkatraman et al. (2017) examined data of patients
who were treated within the first 24 hours, and included textual data about
their initial information and the doctors prescription. By applying PTM
they were able to create a topic model, which was able to automatically
create topics which would benefit decision support content, thus, allowing
health care to function more efficiently. Venkatraman et al. (2017) mea-
sured differences in expected and unexpected events involving crosswinds.
The researchers applied PTM to include variables such as, steering angle,
and the frequency of changes in steering angle. Besides that, the researchers
were able to translate time-series data to symbolic representation. The next
section will describe the steps which are required to transfer time-series data
to symbolic representation.

2.3 Symbolic Aggregate Approximation

In their study, McLaurin et al. (2014) mentioned that analysis of time-series
data is challenged, as large amounts of data make it difficult to maintain
the overview of the data. McLaurin et al. (2014) refer to this as "compre-
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hensive analysis", and emphasize that data reduction or data compression
is required to maintain the synopsis of large amounts of data (p. 2107). To
complement comprehensive analysis, studies experimented with high-level
representations, such as "Fourier transforms, wavelets, eigenwaves, piecewise
polynomial models" (Lin, Keogh, Wei, & Lonardi, 2007, p. 107). However,
Lin et al. (2007) argued these methods did not treat dimension reduction
of data, which makes analysis with data mining techniques problematic.
Moreover, previous methods applied distance metrics to convert data to
symbolic representations. However, this type of conversion changed the
original data structure, and was therefore, not adequate enough to apply
for future analyses (Lin et al., 2007). To cope with this problem, Lin et al.
(2007) introduced Symbolic Aggregate Approximation (SAX). SAX is ca-
pable to turn time series data into symbolic representation, while containing
the data structure. The conversion of time series data consists of two steps.
First, each instance in time series data is transformed to a alphabetical rep-
resentation. This forms part of Piecewise Aggregate Approximation (PAA),
in which ranges in time series data are divided into equal sized window
frames. This is achieved by normalizing the data, and to divide time frames
by the probability of occurrence of each window frame (see figure 2.3). Each
instance in the time series data is then assigned to in one of the alphabetical
representations, which the PAA conversion has provided. The second step
in PAA conversion is to combine the alphabetical transformation of words
of one time series occurrence into a string.

Figure 2.3 Conversion of time series to SAX-representations.
Time series are first normalized. Each frame in this figure has an
equal size, thus, representing the probability of each symbol occur-
ring. Each frame is divided by breakpoints. Then, values in the
time series are converted to the alphabetical representations de-
pending in which frame they coincide. The numerical conversion,
in this case, is translated as "abadedbecb" (Puschmann et al., 2018,
p. 5).

Lin et al. (2007) were able to apply SAX-conversion on time series, and
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created a methodology to reduce the dimensionality of data. Their method,
enabled consecutive studies not only to analyze large amounts of time se-
ries data, but also to combine various variables (McLaurin et al., 2014;
Puschmann et al., 2018; Venkatraman et al., 2017). For example, Puschmann
et al. (2018) applied traffic data, and combined this with weather data,
which was available in the city of Aarhus in Denmark. Venkatraman et al.
(2017) were able to analyze expected events during driving behavior of par-
ticipants. Steering wheel angels and steering rate were combined using the
SAX-methodology. McLaurin et al. (2014) combined acceleration, and speed
data, to construct a SAX-representation, which was used for Probabilistic
Topic Modeling, which will be discussed in next section. In conclusion,
SAX-methodology has enabled a variety of research fields the opportunity
to include large amounts of time series data, which can also be combined.
At the same time, time series data contains its structure, but dimensional-
ity is reduced, which allows SAX-represented data to be analyzed with data
mining techniques.

2.4 Probabilistic Topic Modeling

In his short review about PTM, Blei (2012) mentioned the usability of PTM
in textual analysis. A major advantage of PTM, which was mentioned, is the
convenience of PTM-algorithms to automatically structure datasets (Blei,
2012). In a text mining perception, PTM is able to analyze collections of
documents and to uncover all hidden topics. Besides that, PTM finds the
structure of topics in each document, by indicating the presence and location
of topics in documents. LDA is described as "generative probabilistic model
of a corpus" (Blei, Ng, & Jordan, 2003, p 996). More specifically, LDA
analyses documents in a corpus, and assumes that these documents are a
mixture of topics, with topics consisting of collections of words. Each topic
is then a collection of words, which indicate their strength in a topic by
means of a probability. To conduct LDA, three assumptions need to be
included. First, LDA expects a determined N of words in a document,
based on Poisson distribution. Second, a topic mixture must be chosen
by determining θ. Third, each word in the document must be generated
by (1) choosing a topic (z), which is assumed to exist in a corpus by a
multinominal distribution, and (2) by choosing the topic that generates
words (w), based on the multinominal distribution of the topic (Blei et al.,
2003). Subsequently, the generative process of LDA is expressed in the
following equation:

p(β, θ, z, wD) =
K∏

i=1
p(βi)

D∏
d=1

p(θd)
( N∏

n=1
p(zd,n|θd)pwd,n|β, zd,n)

)
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LDA expects to receive at what topics the corpus consist of. With this
information LDA returns the topic distribution per document, and word
occurrences in topics. Blei et al. (2003) refer here to computing a posterior
distribution of hidden variables. The equation, which applies to this is as
follows:

p(β, θ, z|wD) = p(β, θ, z,wD)
p(wD)

"LDA makes some important assumptions about corpora" (Remmits, 2017,
p 5). LDA assumes documents are a bag-of-words representation, and thus,
syntax are not taken into account. LDA works backwards when analyzing
documents to identify the topics, and word distributions in topics. LDA
achieves this by learning from topic representations in text. Words in doc-
uments are first randomly assigned to one of the predefined topics. Then,
LDA calculates the proportions of all words, which are present at that mo-
ment in that topic. Subsequently, the proportion of that topic over all
documents is calculated. After iterating until words in the corpus are as-
signed to topics, and topics to documents, the LDA-model is created.

LDA has been proven to be an effective tool in studies as it is an easy to
understand algorithm, while creating precise results (Chang, Gerrish, Wang,
Boyd-Graber, & Blei, 2009). Furthermore, LDA is able to detect semantic
coherent topics without human intrusion. Therefore, LDA has improved text
mining related studies to quickly and effectively determine topics in text.
However, a downside of LDA is required input of K topics (Blei, 2012).
Thus, in case of studies, which explore topics in large corpus, a trial-and-
error approach of topic determination is expected to find to optimal set of
parameters for the eventual LDA-model.

2.5 Psychomotor Vigilance Test

The current research is interested in differences in driving behavior between
alert and unalert individuals. McLaurin et al. (2014) differentiated between
OSA-patients and non-OSA-patients. An effect of OSA-patients on a daily
life is the presence of daily fatigue. Subsequently, fatigue has a negative
influence on the alertness-state of an individual (Song et al., 2017). In the
study of Song et al. (2017), the researchers tested alertness on different type
of participants, who were categorized by age. Younger participants were
significantly affected by fatigue and would therefore, perform worse on a
alertness-maintaining task. Thus, detection of fatigue among drivers is es-
sential in order to determine whether their personal state influences their
alertness (Bener, Yildirim, Özkan, & Lajunen, 2017).
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To measure the alertness state of participants in a driving simulation, mul-
tiple studies have included the Psychomotor Vigilance Test (PVT) (Aryal
et al., 2017; Brunnauer et al., 2018). PVT is a reaction time test in which
individuals are randomly exposed to stimuli over an period of time ranging
from 3 to 10 minutes per test. During a test, an inter-stimulus appears on
a screen which irregularly is displayed between two and ten seconds, and
participants are requested to react as fast as possible to the stimulus.

PVT has allowed studies to analyze the effect of sleep loss on individuals
Loh, Lamond, Dorrian, Roach, and Dawson (2004). The objective of stud-
ies which implemented PVT, is to measure whether a decrease in reaction
time can be measured, and thus, depreciation of psycho-motor skills. Stud-
ies have successfully found differences in reaction times as errors increased
and vigilance decreased as a result of sleep deprivation.

Originally, PVT required to include ten minute intervals per test to ensure
validity of alertness results. As researchers argued intervals could be dimin-
ished while ensuring similar results, lower intervals of three to five minutes
intervals were tested. Researchers were able to confirm five minute intervals
in PVT, which led to similar results as to ten minute intervals (Jones et
al., 2018). A major advantage of lower intervals is the practicality of con-
ducting experiments with PVT in situations were surroundings are hectic.
Besides improvements in time intervals, studies have also measured the ef-
fect of conducting PVT on different devices (e.g., mobile phones, tablets).
In the past, PVT required to be conducted on a computer. Arsintescu et al.
(2017) studied the difference between computer-based PVT and touchscreen
devices, and concluded that the results for both tests had no significant dif-
ferences. Therefore, their study contributed to the validity of hand-held
devices with touchscreen, and allowed future studies to apply PVT in more
hectic surroundings.

PVT allows to measure the alertness state of individuals. In the experimen-
tal setup of McLaurin et al. (2014), participants were selected for research
due to their health-state (i.e., OSA patients versus non-OSA patients). An
attempt in this study is made to replicate this study (McLaurin et al., 2014).
However, due to resources the current study did not have access to a hu-
man subject pool with OSA-patients. On the other hand, Batool-Anwar et
al. (2014) were able to apply PVT in their experiments and were able to
confirm that PVT was useful for assessments of fatigue along individuals.
Moreover, PVT allows more reliable results than subjective sleep evalua-
tions (Batool-Anwar et al., 2014). To distinguish between alertness states,
thresholds were determined to classify participants in alert versus unalert
states. Chapter 5 describes how PVT was conducted during experiments
and how thresholds were determined.
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3 Experimental Setup Driving Experiment

This section establishes the procedures which were performed to create the
desired Probabilistic Topic Model (PTM). First, this section describes the
collection of the data. After this, the preprocessing steps are described and
the experimental setup to conduct PTM is further explained.

3.1 Data collection

3.1.1 Participants

In total, twenty-five participants were recruited through convenience sam-
pling (5 women, 20 men, M age = 28.38, SDage = 8.42, age range: 19–59)1

As participants were closely available to the researcher, they were willing to
participant on a voluntarily basis.

3.1.2 Design

The study applied an experimental design, where all participants would
perform a similar experiment. That is, each participant was exposed to one
condition.

3.1.3 Apparatus and materials

For this research, a telematics sensor, type T31 was applied (see figure 3.1).
This device, which was provided by Crossyn, was installed on the battery
of the vehicle. The T31 was powered by the car battery. The sensor con-
sisted of a GNSS receiver, which was connected to a GNSS satellite. The
connection between receiver and satellite, made it possible to determine the
position and timestamps of the vehicle. Subsequently, datapoints made it
possible to determine the velocity of the vehicle.

Participants completed their task in a 2017 Toyota CH-R vehicle with man-
ual transmission (see figure 3.2). This gasoline powered vehicle was exclu-
sively used for all tests in this study. Toyota Netherlands granted the use of
this vehicle between December 4th and December 11th, 2017.

1M = mean, SD = standard deviation.
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Figure 3.1 T31-sensor

Figure 3.2 Toyota CH-R

3.1.4 Procedure

Twenty-five experiments were conducted over a period of six days from De-
cember 4 until December 9, 2017. During registration, participants indi-
cated time slots and pick-up point, which depended on convenience in daily
schedule of the participant. Participants were asked to refrain from being
intoxicated at least 12 hours before the experiment as this could have influ-
ence on the experiment. To ensure safety, experiments did not take place
if one or more health situations applied to a participant. All participants
were generally in good health and mental condition. Participants received
a consent form and were asked to give formal consent in case they agreed
with the conditions of the experiment. After formal consent was provided,
participants drove one session of approximately 30 minutes. A timer started
counting as soon as the participant and researcher drove away from the start-
ing point. The timer was stopped at least after 30 minutes and stopped as
soon as the driver reached the end point and switched of the engine.

3.1.5 Driving task and environment

Besides formal consent, participants received oral instructions for clarity of
the driving task. Participants were instructed that they would receive oral
directions throughout the driving task, meaning they did not have to nav-
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igate themselves. Visual navigation was excluded from the experiment, as
drivers were required to stay focused on the road to ensure safety. Also,
auditory input in the vehicle was diminished by keeping the radio mute 2.
Finally, participants were allowed to have a casual conversation during the
experiment in order to imitate natural driving behavior.

After instructing each participant, the experimenter, who took place next to
the driver’s seat, started to give directions. The routes in the experiments
were not identical as start and end points differed based on what partici-
pants indicated in their registration. Although the routes were mostly not
identical, most of the routes showed similarities, as the experimenter main-
tained the city ring in the city of Tilburg in the Netherlands, which covered
approximately 30 minutes. Retaining this route ensured the driving task of
sufficient driving time. As figure 3.3 illustrates, the city ring in Tilburg is
represented by long uneventful roads, where the speed limits vary from, 50
km/h to 70 km/h.

Figure 3.3 City ring in Tilburg, The Netherlands. The red line
indicates the predefined route held during the experiments. De-
tailed routes are excluded from this figure to protect anonymity of
participants.

3.2 Dataset

3.2.1 Data overview

The dataset, which was provided by Crossyn, consists of 24 rides, which
were recorded from December 4th until December 9th, 2017. One ride was
excluded from the dataset, as the T31 lost its connection due to an unknown
reason. Before delivering the data, a Crossyn software engineer interpolated
the data between instances, as the T31 illustrated infrequent gabs in seconds

2In their study, Brodsky, Olivieri, and Chekaluk (2018) concluded that hostile music
can lead to distracted drivers.
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between instances. More specifically, interpolation made it possible to fill in
missing values. This was done by interpolating data within instances that
were two or more seconds apart from each other. In total, the experiment
stored 813.30 minutes of driving data, which equals 13.55 hours. Every
experimental task took approximately 30 minutes per ride (MPR, M ride =
33.89 MPR, SDride = 8.33 MPR).

3.2.2 Preprocessing and Feature Extraction

All preprocessing and analysis steps were applied in Python 2.7 using Py-
Charm (Professional 2018.1 version) as a software tool. First, driving data
was set to SAX by utilizing the Python package saxpy.alphabet3. Similar
to the study of McLaurin et al. (2014), at most 8 alphabetical represen-
tations of speed and acceleration were defined. Table 3.1 illustrates the
alphabet used for this study, and its corresponding ranges.

Range

SAX letters Speed (km/h) N Acceleration (g) N

a 0.0 to 1.0 10566 −1.1890 to 0.0760 3728
b 2.0 to 16.0 4161 −0.0708 to −0.0472 2474
c 17.0 to 28.0 4407 −0.0437 to −0.0283 6224
d 28.7 to 38.0 5417 −0.0212 to −0.0094 56
e 39.0 to 48.1 10513 −0.0081 to 0.0071 24230
f 48.4 to 59.3 4011 0.0089 to 0.0239 62
g 60.0 to 74.0 3054 0.0283 to 0.0438 5208
h 75.0 to 124.0 6669 0.0453 to 0.0708 3000
i n.a. n.a. 0.0755 to 1.2180 3815

Table 3.1 Conversion of continuous input to SAX output.

After defining the alphabet, letters were combined into words. The structure
of each word consisted of one letter (i.e. from "a" to "h") which coincided
with speed. Subsequently, the second letter in the converted words, coin-
cided an acceleration-letter from "a" to "i". Lastly, the letters were joined
by placing an underscore between letters of each word. In total, 67 unique
words were created.

The current study exhibits similarities with the frequency of speed letters in
the study of McLaurin et al. (2014), partially reproducing their results, but
in another context, since this study aims at identifying distinctive behavioral
profiles in a general setting. For readability purposes, letters which present
speed intervals are mentioned by a capital letter and acceleration intervals
by lower case letters. Table 3.1 indicated the most occurring letters in the
data set were "A" (N = 10556), "E" (N = 10513), and "H" (N = 6669). As

3https://github.com/seninp/saxpy
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"A" stands for a very low speed, it represents the car being in a stationary
position. The letter "E" in its turn is represented by a speed between 39.0
and 48.1 km/h, which results in a modest speed. This speed coincides with
maximum speed barriers between 30 to 50 km/h, and can be defined as
city driving McLaurin et al. (2014). Followed by the "E", the letters "F",
and "G" range between speeds of 48.4 to 74.0 km/h, which present roads
where speed limit is 70 km/h. Hence, this driving behavior can be defined
as moderate. The letter "H" ranges from 75.0 to 124.0 km/h. This speed
range is similar to the study of McLaurin et al. (2014), in which the letter
"H" was defined as high speed driving. Therefore, the current pre-processing
steps indicate similarities to this previous study.

3.3 PTM

The SAX corpus which was constructed in the previous section formed the
vocabulary for PTM. Then, the topic modeling library scikit-learn4 was
used to prepare the analysis. Subsequently, LDA required a document word
input. By applying Countvectorizer the representation of SAX words in
the text was simplified by an object, which stored the occurring words in
the following format: (0, 1) 2. The first number in the tuple presents the
number of the document, which is the first document in our dataset. Before
assigning a number to all words in the corpus, countvectorization ordered
all words in alphabetical order. Hence, the first word that occurred in the
dataset was represented by the word "A_a", and its number was assigned as
1. The third number outside the tuple was the frequency of the word in the
document. Thus, "A_a" occurred two times in the first document. The vec-
torization of the dataset was further applied on the corpus (i.e., documents
and words). The collection of words in documents results in a bag-of-words

(BOW), which is applied in natural language processing to visually repre-
sent words by means of vector space.

The next step after constructing the BOW, was to apply it on LDA. In
order to find the topic model with the best fitting topics, a grid-search was
applied. The parameters which were applied were: number of topics and
learning decay. LDA requests for input for the amount of topics. Therefore,
a range from 1 to 5 (inc. 5) was given as input. LDA, which is created
using the scikit-learn library, consists of Online Variational Bayes algorithm,
which is applied in large amounts of documents (Hoffman, Blei, & Bach,
n.d.). Learning decay is applied to control the learning rate. The values,
which were set for this range, vary from 0.5 to 1.0. For this grid-search,
three inputs were applied (i.e., 0.5, 0.7, 0.9). The default for learning
decay is set at 0.7. After parameters were defined, the LDA-model was

4https://github.com/scikit-learn/scikit-learn
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generated by applying a grid-search class in scikit-learn. The input for this
model consisted of determining which model had to be constructed (i.e.,
LatentDirichletAllocation()) and with which parameters. The model was
fitted by applying the vectorized data.

3.4 Parameter optimization

The current study was interested in evaluating potential differences in be-
havioral driving topics. Unlike the study of McLaurin et al. (2014), in which
no strategies were applied to improve the LDA-model, this study will op-
timize the LDA-model, by including parameters that analyze the corpus
of this study in various ways. The following text-mining strategies were
included:

• n-grams: were applied in the Countvectorizer ranging from 2 to 3
words. Hence, for the analysis bi-, and trigrams were included.

• max_features: is a function in NLP, which allows researchers to
indicate the maximum amount of features (i.e., words) to include in
the BOW. For this study, max_features was set at 100, meaning LDA
did include the top 100 most used words in the corpus, and excluding
all other words.

• min_df and max_df: can be set to include and exclude words which
occur too frequently in text. The default for min_df is 1, meaning that
words are excluded which appear only in one document. The default
for max_df is 1.0, which means that no words are ignored in the full
corpus. In this study, a max_df of 0.70 was selected, which means
that words were excluded which appeared in more than 70% of the
documents. Applying these parameters allows to include words in
the corpus, which did not occur in most documents, and therefore,
potentially finding subtile changes.
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4 Results Driving Experiment

This section presents the results of the LDA experiment, which was created
using naturalistic driving data from twenty-four rides. The LDA model
was created by empirically analyzing the parameters, which determined the
optimal topic model.

4.1 Experimental results

As a first experiment, an LDA model was created by leaving out text min-
ing strategies. Section 2.4 mentioned that LDA expects to receive K topics
in order to create a model around this. In this study, K topics were not
provided as human observation in driving data is challenged. The goal to
find the optimal number of topics, is not to include topics with redundant
information. In order to determine K topics, learning decay was assessed.
Learning decay indicates which point is optimal in a sense of learning rate.
Preferably, a learning decay close to 0.0 is desired. Figure 4.1 illustrates
the results of the learning decays. In order to choose the best fitting model,
a grid search approach was included. The results illustrate that this maxi-
mization is achieved with the learning decay of 0.5, meaning it outperforms
both 0.7 and 0.9, with a learning decay of approximately -50,600. Hence,
for this topic model, three topics were created.

Figure 4.1 Choosing optimal LDA model by assessing the learn-
ing decay. The optimal LDA-model is created with three topics.
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4.2 LDA model

The experiment has resulted in a fitted topic model, which consists of three
topics. This section will discuss the topic definition, the topic distribution
along the dataset, and a visual representation using the Python package
pyLDAvis1.

4.2.1 Topic definition

The LDAmodel has created a topic model of three topics in total. Each topic
consists of the probability of keywords which explain the weight of signifi-
cance. The top keywords are extracted from the topic model by converting
the vectorized dataset to the featured names. This leads to an overview
of SAX words, which describe the composition of each topic. Table 4.1 il-
lustrates the output of each topic by showing the words with the highest
weight. Each topic will be further described in the next sections.

Topics

Words Topic 1 Topic 2 Topic 3

Word 1 A_e A_e H_e
Word 2 E_e E_e A_e
Word 3 H_e E_c H_c
Word 4 E_g E_g H_g
Word 5 G_e F_e E_e

Table 4.1 List per topic of top five SAX words with highest
weights in descending order.

4.2.1.1 Topic 1: city driving

Topic 1 has the strongest weight for word "A_e", which is characterized by
the letter "A" and "e". Previously, table 3.1 described the ranges in which
each letter coincided, meaning that "A_e" explains the car in a stationary
position. The second strongest word (i.e., "E_e") identifies city driving with
very low acceleration. Third, the letter "H_e" defines a higher constant
speed during a ride (i.e., 75.0 and 124.0 km/h) with very low acceleration.
The fourth word in topic 1 is "E_g", which describes a city driving speed
with a higher acceleration. Last, the word "g_e" describes a high constant
speed (i.e., 60.0 to 74.0 km/h) and again with very low acceleration. Except
for word 4, the top occurring words describe a constant speed between 39.0
and 48.1 km/h. Inclusion of the word "H_e" with a speed varying between

1https://github.com/bmabey/pyLDAvis/blob/master/pyLDAvis/sklearn.py
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75.0 to 124.0 km/h deviates from other words in this topic. However, it
might be that the original data in this topic consists of speeds closer to 75.0
km/h than 124.0 km/h. Furthermore, "A_e" is a frequent occurring word
in the dataset, and is listed on top of the other words. Thus, topic 1 is
described as city driving.

4.2.1.2 Topic 2: complete city driving

Topic 2 has similarities when compared to topic 1. This indicates that topic
2 is similarly clustered as city driving. The difference in topic 2 are the words
"E_c" and "F_e". First, "E_c" can be described as a speed between 39.0
to 48.1 km/h with deceleration, meaning that speed of the car represents
city driving, and is decelerating at the same time. This action will most
likely occur right before the car is about to turn into stationary position.
The second word, "F_e", which also deviates from topic 2 is represented by
a constant speed between 48.4 and 59.3 km/h and a very low acceleration.
As topic 2 differs by the two most occurring words, it resembles city driving
similarly to topic 1. However, the top 5 words of topic 2 describe city driving
more thoroughly as it includes a speed between 48.4 and 59.3 km/h. The
maximum speed of roads which were included during the experiment were
mostly 50 km/h. This word is essential in the definition of city driving.
Therefore, topic 2 subsists of a more complete overview of city driving.

4.2.1.3 Topic 3: Highway driving

Topic 3 clearly highlights different top words compared to topic 1 and 2.
The highest ranked word, "H_e", represents a constant speed between 75.0
to 124.0 km/h, and with very low acceleration. Then, topic 3 includes word
"A_e", which is a stationary position of the car. Third, "H_c" represents a
similar speed range as word 1, but instead it denotes a decelerating state.
Fourth, "H_g" indicates the same speed range as the word "H_c", but rather
than deceleration, this word is a representation of acceleration. Lastly, the
word "E_e" is a representation of a constant speed range from 39.0 to 48.1
km/h. As the top words give an indication of higher speeds, this topic can
be defined as highway driving.

4.2.2 Topic representation in documents

An essential part of LDA analysis is to distinguish which topics belong to
which documents. Table 4.2 provides an overview of all documents which
were included in this study. Then, weights of topics indicate to which extend
a topic is represented in each document. The weights of all topics, which
are included in one document, accumulate to 1.0.
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In table 4.2 Topic 2 and 3 are included, and Topic 1 excluded. The reason for
this is that topic 1 had no occurrence in any of the rides. Interestingly, LDA
analysis found the best fitted model with three clusters, but topic 1 shows
no significance when assigning topics to rides. Section 4.2.1 highlighted two
topics, which in essence appeared to be similar. The results in Table 4.2
confirm the redundancy of topic 1 compared to topic 2 and explain why
topic 1 has no significance in the distribution of topics.

Topics

Document number Topic 2 Topic 3

1 0.98 0.02
2 1.00 0.00
3 1.00 0.00
4 1.00 0.00
5 0.34 0.66
6 1.00 0.00
7 1.00 0.00
8 1.00 0.00
9 1.00 0.00
10 1.00 0.00
11 0.86 0.14
12 0.94 0.06
13 0.00 1.00
14 0.00 1.00
15 1.00 0.00
16 0.00 1.00
17 1.00 0.00
18 1.00 0.00
19 1.00 0.00
20 1.00 0.00
21 0.14 0.86
22 1.00 0.00
23 1.00 0.00
24 1.00 0.00

Table 4.2 Weights of topic occurrences per ride for topic 2 and
3. Topic 1 is excluded from the overview as no occurrences were
present for this topic in the experimental sample.
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In order to give insights which topic was most dominant in each document, a
topic distribution is displayed in table 4.3. A surprising result is that 5 rides
are clustered as highway driving, which correspond to the rides that were
held in the driving experiment. Thus, LDA analysis succeeded in correctly
clustering the documents into the type of driving which was most dominant
during each ride.

Topic number Number of documents

2 19
3 5

Table 4.3 Distribution of dominant topics in current dataset.

4.2.3 Visualization topics

The aforementioned python package pyLDAvis, was applied to the LDA
analysis. This function in Python allows to visually and interactively repre-
sent the topics in HTML. Figure 4.2 illustrates the interactive output from
the LDA model. On the left, the bubbles represent the topics in a semantic
topic space. This means that the closer these bubbles are to each other, the
more semantic resemblance they share. Figure 4.2 indicates that topic 2
and 3 do not share common words, as they appear on a long distance from
each other on the distance map.

On the right side of Figure 4.2 the words are displayed which were applied
to the LDA analysis. The interactive visualization makes it possible to
highlight a word. Subsequently, the sizes of the bubbles on the left adapt
to the prevalence of the word inside the topic. This means that the more
important a word appears to be in a bubble, the larger the size of the bubble.
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Figure 4.2 The topics from the LDA analysis are visualized by
applying pyLDAvis. Topics are represented by bubbles on the left
side indicating their sizes and respective distances to each other as
obtained by multi-dimensional scaling. The right side of the figure
displays the word term space, visualizing the respective term fre-
quencies. The words are ranked in descending order of importance.

4.3 Different strategies in Topic Modeling

In the following, steps are outlined for identifying behavioral driving patterns
using a more complex topic modeling approach. As previously discussed in
Section 3.3, these refinements include using (1) n-grams (bigrams, trigrams),
(2) a restricted set of n-grams, and (3) a selection of n-grams forming the
topic models.

4.3.1 Behavioral Topic Modeling using n-grams:

The first experiment applied bi- and trigrams on the data set to enable more
complex patterns of words, and thus to potentially find stronger patterns
than only applying unigrams. The most optimal learning decay was achieved
with four topics. An overview of each topic, with most occurring vocabulary
is shown is Table 4.4. In order to investigate if the results of this LDA-model
differ from the LDA-model, which was described in Section 4.2.1, we assess
each topic individually:

• Topic 1 (highway driving) distinguishes itself by high speeds. Sec-
tion 4.2.1 defined highway driving as a topic, as speeds were included
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which were higher than 75.0 km/h. Applying bi- and trigrams in-
dicates that a combination of "H_e" determines the most important
word in topic 1. More specifically, the highest proportion of "H_e" re-
sides this topic. Thus, this LDA-model has defined topic 1 as highway
driving.

• Topic 2 (high way driving during rush hour) is the smallest
topic in this LDA-model. The speed in topic 2 ranges from minimal
(i.e., "A") to a higher speed ("H"). Overall, term frequency is very
low in topic 2, indicating the size of this topic is very small. More
interestingly, topic 2 consists of a combination of high speed, and a
stationary position. Referring to the driving experiments held for this
study, one participant was subject to rush hour, while driving on a
high way. As one participant was subject to this occasion, the size of
topic 2 is explained.

• Topic 3 (city driving with subtile changes) indicates speeds
which do not exceed the letter "H" (> 75.0 km/h). An interesting
observation is the bigram "E_e D_c", meaning that the car shifted
from a constant speed between 39.0 and 48.1 km/h to 28.7 and 38.0
km/h. Moreover, the acceleration decelerates to -0.04 and -0.03. A
subsequent event which occurs in topic two is shown with trigram "E_e
D_c D_e", which clearly indicates a change in constant speed from
approximately 50 km/h to 30 km/h. Thus, topic 3 shows a subtile
change in speed.

• Topic 4 (city driving) forms the largest topic in the LDA-model.
The most relevant words indicate similarities with the previously es-
tablished LDA-model in Section 4.2.1. More specifically, the top bi-
grams, which are shown in Figure 4.4, are defined as "A_e A_e" and
"A_e A_e A_e". As previously explained, "A_e" is a representation
of a stationary state of the vehicle. The third and fourth most impor-
tant words of topic 4 are again a homogeneous combination of bi- and
trigram, but instead of the word "E_e". The symbolic representation
of speed and acceleration was previously described in Table 3.1. "E_e"
was an indication of a constant moderate speed (39.0 to 48.1 km/h).
Compared to Section 4.2.1 topic 4 can be determined as city driving
as speeds do not exceed speed letter "H", which is higher than 75.0
km/h.
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Topic Vocabulary

Rank Topic 1 Topic 2 Topic 3 Topic 4

1 H_e H_e H_e H_e A_e A_e A_e A_e A_e
2 H_e H_e H_e H_e H_e H_e A_e A_e A_e A_e A_e
3 H_c H_c A_e A_e A_e E_e E_e E_e E_e
4 H_g H_g A_e A_e F_e F_e E_e E_e
5 A_e A_e F_e F_e E_e E_d F_e F_e
6 A_e A_e A_e E_e E_e F_f F_e E_c E_c
7 H_e H_c F_e F_e F_e F_e E_c G_e G_e
8 H_e H_c H_c E_e E_e E_e E_e D_c E_g E_g
9 H_c H_c H_c G_e G_e E_f E_c G_e G_e G_e
10 H_e H_e H_c E_c E_c E_e E_c E_e B_a B_a

Table 4.4 Presentation of most occurring words for each topic in
LDA-model with inclusion of bi-, and trigrams.

As implementing n-grams in the LDA-model created more topics compared
to the first experiment, which were surprisingly informative, n-grams were
investigated in more detail. As a first step, n-gram were restricted to a
set of the top 100 (max-features) in the analysis. This created an optimal
LDA-model of 4 topics. As this “max-features model” only includes the
most common features of a corpus, it is expected that this LDA-model will
indicate more general patterns in the driving data.

• Topic 1 (Constant speed driving): In this LDA-model, topic 1
moderately represented, compared to other topics. The top 2 features,
which are included (i.e., A_e A_e A_e, and A_e A_e), determine
the over representation of a stationary position along the dataset. The
next words, which are defined after these top 2 words, share similarities
in a sense that speeds are constant (i.e., represented by the acceleration
letter "e"). Besides that, speed letters D, E, F, G, and H indicate a
high variety in speed ranges in topic 1. As the commonality in these
words is represented by a constant speed, topic 1 can be defined as
constant speed driving.

• Topic 2 (City driving with max 75 km/h): The largest rep-
resentation of topics in all rides, is topic 2 as it occurs in 17 rides.
Similarly to topic 1, the top 2 occurring words include the stationary
representation (i.e, A_e). Subsequently, there is a variety in speeds
and acceleration which define topic 2. Most importantly, speeds do
not exceed 75 km/h, indicating topic 2 as city driving. Furthermore,
acceleration letters vary from a, c, e, g, and i. This is a representation
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of city driving, as drivers are constantly accelerating and decelerating
due to vehicle density, and traffic lights.

• Topic 3 (Highway driving): Similar to the previous two experi-
ments, in which highway driving was included, topic 3 is highly repre-
sented by high speeds, and thus, high way driving. In essence, speeds
do not occur below speed letter H. At the same time, acceleration
letters vary from acceleration to deceleration, in which the two most
important words of topic 3 are represented by constant high speeds
and low acceleration. Thus, as speeds above 75 km/h are over repre-
sented in varying accelerations, topic 3 is defined as highway driving.

• Topic 4 (High way driving during rush hour): Topic 4 is similar
to topic 3, in a sense that higher speeds are combined with the sta-
tionary state of the car. In this topic, even higher speeds are recorded.
The fact that word combinations with "A_e" exist, indicates a driv-
ing situation within a rush hour, as in these driving situations it is
common to stand still on a highway due to a high amount of traffic.
This result corresponds with one participant, who drove on a highway
during rush hour in the afternoon.

4.3.2 Behavioral Topic Modeling using selected n-grams

The last experiment makes it possible to include and exclude features, which
are under or over represented in the corpus. The optimal LDA-model in
this setting consisted of two topics. Similar to the previous experiments,
this experiment included bi- and trigrams. The default min-df is set at
1, meaning that no features in the corpus are ignored. max-df was set at
0.5, meaning that words which occur in 50% of the corpus are removed, to
prevent the majority of words to be included. This approach allows to zoom
into less frequent words in the corpus, and to focus on subtile changes in
driving behavior.

• Topic 1 (High and low acceleration and deceleration): presents
a wider variety of SAX-representations. For example, the first most
relevant word in this topic is D_g D_g D_g, meaning an occurrence
during a ride in which a driver would accelerate strongly, while finding
itself between a speed of 28.7 to 38 km/h. Typically, in real driving
situations, a state of D_g would occur in an situation where a driver
would strongly accelerate to reach a point where the speed would be
constant. In a city driving environment, a driver could accelerate to
a point to which the speed would be E (i.e., between 39.0 and 48.1
km/h). The second, most important term in topic 1 is G_c G_c G_c.
A close look at Table 3.1 reveals that this trigram explains a state
in driving behavior in which the car is slowly deceleration, and in a
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fairly high speed (i.e., between 60.0 and 74.0 km/h). The following
terms in topic 2, are indications of high acceleration and deceleration.
For example, the trigram "C_c C_c C_c" is an occurrence in which
the vehicle is decelerating. Furthermore, D_a D_a D_a is a state in
driving situations in which the vehicle is decelerated very strong, while
the speed is between 28.7 and 38.0 km/h. All salient terms in topics
of previous experiments, which included bi- and trigrams, and restric-
tion using max-features, indicated mostly zero acceleration with SAX
letter "e". The current topic sheds light to SAX-words, which repre-
sent a variation of acceleration and deceleration in driving behavior.
Since 70% of most occurring bi- and trigrams in the corpus were re-
moved, this time topics were shaped, which include less situations that
occurred during the driving experiments.

• Topic 2 (High speed driving): the largest proportion of this topic
consists of combinations, which include the SAX-word "H_e". More-
over, each combination in this topic is defined with the letter "H",
which is the representation of speed between 75.0 to 124.0 km/h.
Furthermore, the variation of accelerating symbolic representations
is almost complete as the acceleration letters b to h are represented in
the topic terms.

35



5 Experimental Setup Psychomotor Vig-

ilance Test

To establish a framework which enables to determine the alertness state
of participants, a Psychomotor Vigilance Test (PVT) was applied. The
objective of PVT was to objectively quantify the vigilant state of participants
prior and after the driving experiment, as it was hypothesized that driving
a vehicle would have effect on individuals. The following section describe
the procedure of PVT, which were conducted during the experiments, the
data preprocessing, and determination of the alertness state of participants.

5.1 Procedure

During all experiments (i.e., prior and after the driving experiment) partic-
ipants were exposed to PVT. In order to execute PVT, an Ipad Pro 12.9"
(iOS 9.0) with a PVT application named Vigilance Buddies (available in
the Appstore), was used for the experimental setup. Inter-stimuli appeared
randomly between 2 and 10 seconds within a time range of 5 minutes. A
visual stimulus, displayed in counting milliseconds, was shown after each
inter-stimulus started. Milliseconds continued counting until a participant
reacted, by means of simple reaction time, to the stimulus by tapping the
touchscreen of the iPad. Simple reaction time is a requested response in
experiments, where participants are exposed to one stimulus, and only one
reaction is required (Sehgal & Kapoor, 2018). A participant was not re-
quired to tap a specific location on the iPad, but any touch on the screen
would trigger the inter-stimulus to stop counting. After the trigger was
recorded on the iPad, the point at which the milliseconds stopped accumu-
lating, was displayed for 2 seconds. After this, the screen was reset to a
black background until the next inter-stimulus started.

Participants who reacted too soon to a inter-stimulus, received immediate
feedback, with a brief message (i.e., "False Start"). A False Start-indication
was displayed in case participants responded before a inter-stimulus ap-
peared up until <100 ms. Reaction times of <100 ms were previously de-
termined as anticipated reactions of participants (Basner & Dinges, 2011).
More specifically, Sehgal and Kapoor (2018) determined the average visual
reaction time of individuals to be at approximately 209 ms, with a standard
deviation of 42.50 ms. The results in the study of Sehgal and Kapoor (2018)
did not require to adjust the modality of the current PVT. Reaction times
of >500 ms were denoted as True Errors, which is a current determination
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in PVT of errors that occur during attention inducement (Basner & Dinges,
2011). Before each experiment, participants were instructed to the PVT.
Prior to every first test, a 1-minute pretest was conducted to familiarize
participants with the process of the PVT.

5.2 Data Preprocessing of PVT

The results of each PVT were recorded in CSV-format and sent via e-mail
to the experimenter. In total, 25 × 2 PVT were recorded. Two PVT of
one participant were excluded from the dataset, as the data of the driving
experiment were not valid for this participant. The reaction times (RT) in
each PVT were divided in False Start (i.e., RT <100 ms, FS), True Errors

(i.e., RT >500 ms, TE), and Correct RT (i.e., RT ≥ 100 ms and ≤ 500 ms,
CR). Then, the RT of each 5-minute PVT were prepared to be analyzed.
First, the amount of n FS and n TE were determined. The quantity of
errors were distinguished as errors before, and after the driving experiment.
Subsequently, errors were placed in a histogram to visualize the alteration
before and after the driving experiment. Second, the remaining RT, denoted
as Correct RT, were grouped per minute to analyze the alteration per minute
before, and after the driving experiment. In order to visualize the results,
the CR were placed in boxplots, which would make it possible to analyze
significant differences.

5.3 Data annotation

In order to categorize the vigilant state of participants, a distinction of
(1) Alert, and (2) Unalert participants was determined. The objective of
annotating participants in one of two states was to measure if driving con-
ditions had influence on the vigilant state of participants.

5.3.1 PVT-errors

As mentioned in Section 5.2 two types of errors were collected, and visu-
alized in a boxplot to analyze the alteration before and after the driving
experiment. Appendix A visualizes the quantity of errors which occurred
during all PVT-experiments. In order to annotate whether a participant
was affected after the driving experiment, the errors made were compared.
An increase in errors (i.e., False Starts and True Errors) indicated an im-
paired vigilant state, and thus, an participant who had inclined alertness.
On contrary, a decrease in errors, indicated an increase in vigilant state,
which meant the alertness state of a participant improved after the driving
experiment. This approach of labelling was based on the study of Aryal et
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al. (2017) in which alertness of participants was based on the amount of er-
rors construction workers made during a 2.5 hour experiment. Appendix B
indicates the alertness denotation for all participants included in this anal-
ysis. In total, six participants were denoted as an unalert-state versus 18
alert participants.

5.3.2 PVT Reaction Time

After denoting the alertness level of participants by means of labels, the
next step was to validate the results. In the previous section, participants
were defined as Alert or Unalert, based on the quantity of errors. In this
section, the valid PVT-results (i.e., correct reaction times), were analyzed
to determine whether differences in performances occurred during the driv-
ing experiment. Appendix C displays, per participant and per minute, the
reaction times by means of a boxplot. The objective is to determine whether
error bars of boxplots, before and after the driving experiment, deviate by
non-overlapping error bars. All results in Appendix C indicate that no signif-
icant differences were present as error bars overlap in case of all participants.
These results will be further discussed in Section 7.
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6 Results Topic Models versus Alertness-

state

In this part of the study topic models, which were constructed in Section
4.3, are analyzed in combination with the labelled data from Section 5.2.
In the study of McLaurin et al. (2014), the researchers were able to label
participants as OSA or as Non-OSA patients. Subsequently, differences
between these two groups could be analyzed in order to conclude whether
driving behavior differed between these groups. The researchers based their
results on differences in probability of topics between both groups. This
section will present the results, based on the methodology of the study of
McLaurin et al. (2014) and analyze if differences were found between Alert
and Unalert participants.

6.1 Standard LDA-model

The first LDA-model, constructed in Section 4.2, was constructed with de-
fault settings and created three topics. In Appendix D all experiments are
plotted with the objective to compare topic probabilities between alert and
unalert participants. First, Appendix D.1a denotes a probability of 0.0,
which conforms to the results previously illustrated in Figure 4.2 where no
occurrences were found in Topic 1. The results in Topic 2 and Topic 3 are
an indication of a similar variety in topic probabilities between alert and
unalert participants. The difference between these two groups can be ex-
plained as a difference in the size of both groups. The size of the unalert
population (i.e., 18 participants) was substantially larger than the alert pop-
ulation (i.e., 6 participants). This difference in population size explains the
outliers, which can be found in Appendix D.1b and D.1c. The ranges in
which the outliers of alert participants reside, compared to the error bars of
unalert students are similar. Thus, no significant differences can be found
between these groups.

6.2 Bi-and trigrams LDA-model

In this LDA-model, 4 topics were distinguished (i.e., (1) Highway driving,
(2) Highway driving during rush hour, (3) City driving with subtile changes,
and (4) City driving. The topics of this experiment will be further discussed
in this section:
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• In Topic 1, the distribution of highway driving is illustrated. As can be
seen in Appendix D.2a, Topic 1 has a higher probability for alert par-
ticipants compared to unalert participants. Interestingly, Appendix
D.2a indicates 4 outliers in the alert group. This result resembles the
experimental setup in which exactly 4 participants drove on highways.
This might indicate that along the experiments, participants resided
in an alert state. On the contrary, this result might also indicate that
participants became more alert as participants drove on highways. At
the same time, the results for unalert participants show that Topic 1
has low probability, meaning that unalert participants were not han-
dling highway driving.

• Compared to the LDA-model of the first experimental setting in Sec-
tion 6.1, Topic 2 did not occur in any of the experimental rides.

• Topic 3 indicated city driving with subtile changes. The experimental
results indicate that Topic 3 only occurred in 2 rides, and only for
alert participants. These results indicate that this Topic Model has
created an extra topic, as two rides deviated from the majority of the
corpus.

• In Section 4.3.1, it was mentioned that Topic 4 formed the largest topic
in this Topic Model. The results in Appendix D.2d clearly illustrate
that the weight of Topic 4 is the largest. However, three outliers,
which represent alert participants, are shown in this figure. These
outliers stand out in this figure, similarly as Appendix D.2a. Hence,
the outliers which were present in Topic 1, show a resemblance in the
fact that these rides were typisized by highway driving.

6.3 Max-features model

As the application of bi-, and trigrams resulted in interesting topics, these
were included in the next two experimental setups to create LDA-models.
First, a max-features model was created, which was set at max-features =
100. This setup created 4 new topics. The probability of these topics will
be further discussed:

• Topic 1 was an indication of a large variety of speeds, which shared
resemblance by the acceleration letter e, which combined with speed
letters, signified constant speeds as acceleration was it its minimum.
The results for Topic 1 in Appendix D.3a indicate a low probability
of Topic 1 in both participants groups (i.e., Alert and Unalert partici-
pants). Two participants, labelled as alert, contained a high probabil-
ity of Topic 1, meaning that during their ride, constants speeds were
dominant.

40



• Topic 2, the largest topic in this LDA-model, represented city driving
up tot a mamixum speed of 75 km/h. The results in Appendix D.3b
illustrate the dominance of the probability of topics 2 for both types
of participants. For both participants groups, the whiskers reach to
a probability of 0.0, meaning rides in the corpus did not encounter
driving behavior of Topic 2.

• Similar to the previous LDA-model in Section 6.2, the current LDA-
model consisted highway driving. The results in this topic show few
participants who were exposed to a highway setting. Appendix D.3c
shows three clear outliers for alert participants, compared to 1 outlier
for unalert participants.

• The latter topic, which was previously defined as high way driving
during rush hour, is more represented by alert participants, compared
to unalert participants. However, unalert participants had one outlier,
with a high probability (i.e., ± 0.7).

6.4 Selected n-grams model

The last experimental setup consisted of omitting frequently occurring bi-,
and trigrams (i.e., max-df = 0.7) and least occurring (i.e., min-df = 0.1).
After applying this setup, 2 topics were extracted from the corpus.

• Appendix D.4a indicates the results for alert and unalert participants
for varying acceleration situations. Alert participants are under repre-
sented in Topic 1 as the higher bound of the boxplot reaches less than a
probability of 0.2. However, two outliers are found in this participant
group. Unalert participants are, compared to alert participants, over
represented in Topic 1. The topic probability of these groups ranges
from 0.0 to 1.0, but with a mean closer to a probability of 0.0.

• Topic 2 in this setup was defined as high speed driving. The result
in Appendix D.4b illustrates a reversed output compared to Topic 1.
Here, alert participants have a high probability for Topic 1, and for
unalert participants, the mean is closer to 1.0 than 0.0. For unalert
participants this means that the probability of highway driving ranges
from 0.0 to 1.0.
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7 Discussion

The increase of road fatalities has led to the urge to find methods and sys-
tems to prevent risky driving behavior. Preferably, these methods need to
be automated, as human interference might lead to a bias in risky driv-
ing detection. Furthermore, current techniques, which record naturalistic
driving behavior, have brought the potential and challenge in detection of
driving behavior. Large amounts of data being captured automatically have
the potential to capture individual driving behavior, which inform us about
how people drive. Therefore, the first question in this study sought to de-
termine which topics can be distinguished from naturalistic driving behavior.

First, the challenge in analyzing large data sets, needed to be tackled to pre-
vent the loss of important data characteristics, to apply techniques which
change the structure of time series data, and to encounter models that are
not interpretable, transparent, and explainable. Therefore, this study ap-
plied a time-series abstraction method (SAX, Symbolic Aggregate Approx-
imation) together with topic modeling using LDA, which enables explicate
approaches making models and results interpretable, transparent and ex-
plainable.

In the experiments of this study, symbolic representations (SAX) were ap-
plied, for which then Latent Dirichlet Allocation (LDA) for probabilistic
topic modeling was applied. To answer the first question a general LDA-
model was created, which covered general information about the driving
experiments, which were held for this study. The largest topic in our first
(simple) model represented city driving. In this topic a stationary state of
the car was over-represented. Especially in urban settings, in which roads
are more crowded, and traffic lights are more present, it is more likely to
stand still with a vehicle. Besides this state, Topic 1 was represented by
speeds, which were a reflection of the speed limits that were present in the
urban environment. The second topic, represented highway driving, in which
SAX-words with high speed occurrences were over represented.

Furthermore, this study aimed at answering whether subtile behavioral driv-
ing topics could be distinguished form naturalistic driving behavior. We
analyzed whether more complex topic models would enable more powerful
insights for identifying behavioral patterns. Inclusion of n-grams led to new
insights in the data, as bi- and trigrams provided more information about
occurrences in the data which followed each other. More specifically, besides
city- and highway driving, this model could provide more detailed informa-
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tion about the situations that occurred during the experiment. For example,
a clear distinction between high way driving, with low density in traffic was
revealed, compared to high density (i.e., rush hour). Also, the model de-
tected driving behavior in which a maximum speed of 70 km/h was allowed,
but high density of vehicles and traffic lights were present.

With respect to the first and second research question, this study was
interested in detecting differences between alert and unalert participants.
To answer this question, a Psychomotor Vigilance Test was included in the
experiments. The results of the test were used to label participants, and to
measure whether there were differences in topic probabilities between alert
and unalert participants. In general, the results indicated that the labeled
groups did not differ, as topic probabilities were in similar ranges. More
interestingly, topic 1 in the LDA-model including n-grams indicated that
four alert drivers had a high topic probability for highway driving, which
were the only participants in the sample who drove on a highway. However,
future research is required to investigate this more as the sample was too
small to validate the results.

7.1 Limitations

The current study applied topic modeling using LDA to extract clusters
from NDD. Although application of this method is validated, the results
of the current study need to be interpreted with caution as the study had
several limitations. First, this study was restricted to a sample size of 25
participants, of which 30 minutes of NDD was collected on average. Com-
pared to the study of McLaurin et al. (2014), who used a sample size of
10,705 rides, the sample size of this study did not allow to generalize the re-
sults. Moreover, the presented topic probabilities between topics and labels
in Appendix D proof the limitation of this study as the topic probabilities
between groups of participants was unevenly distributed (i.e., 6 unalert ver-
sus 18 alert participants). Thus, the output of this study led to results,
which need to be interpreted with caution as they cannot be generalized
due to the experimental setup.

Second, the experimental setup in the study of McLaurin et al. (2014) in-
cluded a clear diversified group (i.e., OSA patients versus non-OSA pa-
tients). Including these two clear distinguished groups simplified the study
of McLaurin et al. (2014) as topic probabilities could be compared between
both groups, by comparing the means of the topic probabilities. The current
study did not have access to a human subject pool with OSA-patients, and
thus, applied PVT to objectively quantify the vigilance of participants to
facilitate labelling. Appendix A and C presented the results of PVT. As ex-
plained in Section 5.3.2 participants were divided as alert or unalert. More
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specifically, this study determined alertness level based on the quantity of
true errors and false positives, combined with the distribution of reaction
times of correct PVT input. These results should be improved as figures
in Appendix C did not differ significantly, due to overlapping box plots.
Hence, the labeling of participants based on their PVT results, should be
interpreted with caution.

Third, this study applied a conversion of time series data to symbolic repre-
sentation with SAX. This conversion led to a more intuitive dataset, which
makes it possible to interpret NDD by abstraction. Although this method
reveals nuances in NDD, other techniques have the potential to cluster se-
quences of SAX representations. For example, voting experts (VOX), is a
more sophisticated algorithm, which is able to redefine continuous strings
to words. McDonald et al. (2013) were able to create clusters of strings,
presented by SAX-letters, which enabled to analyze part of NDD and to
clearly define the situations in NDB. This study, investigated word occur-
rences in topics, by analyzing SAX representation in LDA models, but VOX-
representations could benefit the symbolic representation of data as new de-
fined strings would explain more about occurrences in NDB.

7.2 Future research

Despite the promising results of this study, questions remain. Further work
is required to establish the viability of PVT in NDB settings. This study
aimed at objectively analyzing alertness among participants by applying
PVT. Future longitudinal studies, might consider to apply PVT in their
experimental setups. There are numerous PVT applications for Android
or iOS, which make it affordable and efficient to apply PVT. This makes
it possible to connect multiple in-vehicle sensors, combined with inputs of
individuals in real driving scenario’s. Longitudinal studies would benefit re-
ceiving input from participants over several moments in a day, which would
make it possible to analyze the vigilant state of participants over a longer
period of time, compared to NDB.

The transformation of continuous data to symbolic representations has of-
fered this study to build topic models, which were based speed and acceler-
ation. The occurrences in this corpus were combined by means of bi-, and
trigrams in preparation for the LDA-model. As previously described in the
limitations section, future research should aim at applying VOX algorithm
to a naturalistic driving dataset as it would lead to more useful letter com-
binations. In text mining, VOX segments collection of strings (i.e., without
spaces) by finding the highest entropy. Entropy is the lowest within words,

44



which is where VOX algorithm finds frequent occurring combinations and
segments them. Future research would benefit by applying this algorithm
to find even more meaningful symbolic representations, which would create
topic models with more insightful and intuitive words. Also, words that
are defined with VOX, could be combined with GPS data, to determine the
exact situations in real driving situations. However, automated techniques
need to be implemented as manual labeling would be time consuming and
inefficient.
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8 Conclusion

The results of the current study, have revealed different behavioral patterns
providing novel insights in LDA-analysis. Furthermore, we have shown that
the applied methodology using extended LDA models allows to obtain more
comprehensive models for identifying behavioral patterns. To the best of
our knowledge, this is the first time that such methods have been applied in
this context. This contribution might provide the opportunity to detect pat-
terns in naturalistic driving behavior, which would not have been detected
with human interference. This way, it is possible to detect pre-accidental
situations, which provide more information about the driving behavior of
people. Also, if pre-accidental information is available, systems and applica-
tions could be developed, which could serve as a warning system, to prevent
people from risky driving behavior.

For future work, we aim at analyzing richer behavioral profiles on topic mod-
els, utilizing subgroup discovery (Hendrickson, Wang, & Atzmueller, 2018).
Then, also appropriate methods for visualizing and detailed inspection are
interesting directions to consider. Furthermore, the spatio-temporal analysis
of the (abstracted) time-series data using data mining and network analy-
sis (Atzmueller, 2014; Atzmueller & Lemmerich, 2013; Giannotti, Nanni,
Pinelli, & Pedreschi, 2007; Verhein & Chawla, 2008) as well as contextual-
ized approaches for local exceptionality modeling and mining, Atzmueller
(2016); Atzmueller, Schmidt, and Kibanov (2016); Harri, Filali, and Bonnet
(2009) are interesting directions for future research.
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A PVT Error Results
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Figure A.1 Amount of errors per participants distributed
over two moments of PVT. First, the errors before the driv-
ing experiment are displayed. Second, the errors are displayed
after the driving experiment. True errors are defined as reac-
tion times >500 ms. False starts are defined as reaction times
<100 ms.
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B Labels of Alertness State

Participant Label

1 Unalert
2 Alert
3 Alert
4 Alert
5 Alert
7 Alert
8 Alert
9 Alert
10 Alert
11 Alert
12 Unalert
13 Alert
14 Unalert
15 Alert
16 Alert
17 Alert
18 Alert
19 Alert
20 Alert
21 Unalert
22 Alert
23 Unalert
24 Unalert
25 Alert

Table B.1 Labels of alertness state after conducted driving exper-
iment. The labels are based on the increased or decreased number
of errors (i.e., False Starts and True Error). In total, 6 participants
were denoted as Unalert, and 18 participants as Alert.
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C PVT Reaction Time Results
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Figure C.1 Psychomotor vigilance test reaction time results.
Each test was conducted before and after the driving experi-
ment. Pre- and after-results for each 5-minute PVT, are pre-
sented aside, with whiskers presenting the standard deviation.
The means are presented by the horizontal lines in each box-
plot.
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D Topic probability of alertness state.

(a) (b)

(c)

Figure D.1 Mean topic probabilities of alert versus unalert
participants. The standard deviations are shown as error bars.
The boxplots include the results of the standard LDA-model.
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(a) (b)

(c) (d)

Figure D.2 Mean topic probabilities of alert versus unalert
participants. The standard deviations are shown as error bars.
The boxplots include the results of the LDA-model, inluding
bi-and trigrams.
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(a) (b)

(c) (d)

Figure D.3 Mean topic probabilities of alert versus unalert
participants. The standard deviations are shown as error bars.
The boxplots include the results of the LDA-model, inluding
bi-and trigrams and max-features = 100.

(a) (b)

Figure D.4 Mean topic probabilities of alert versus unalert
participants. The standard deviations are shown as error bars.
The boxplots include the results of the LDA-model, inluding
bi-and trigrams and min-df = 0.1, and max-df= 0.7.
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